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What is thermodynamics?

Fundamental or emergent?

Statistical physics is special, thermodynamics is general.

Separation of universal from particular.

Second Law is general, there are statistical demonstrations.

Second Law can be applied for �elds.

Thermodynamics is a stability theory.
( T. Matolcsi, W.M. Haddad, , VP (PTRSA 2023))

Are there some original, genuine

consequences??
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Local, nonlocal and weakly nonlocal

Locality in space(time)

Local �elds and local �eld equations. Example: ϕ(t, x), Poisson equation.
Space integrals in the �eld equations: strong nonlocality.
Nonlocal �elds: Example: f (t, x1, x2), Liouville equation, entanglement.

Weak nonlocality: extension of the �eld equations with higher order space
derivatives. Example: gradient �uids, Horndeski gravity.

Locality in time

Locality in time. No memory. Markov process.
Memory functionals in the �eld equations: strong memory. Example:
principle of fading memory.
Weak 'nonlocality' in time: higher order time derivatives in the �eld
equations. Example: second sound, delay and inertia.

Temporal nonlocality and spatial locality are interdependent.
Action at a distance: vacuum solution of a local theory.
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Holography

Holography ← holos+graphe = complete, whole + drawing, writing.

Optical holography

Dennis Gábor. Reproduction of 3 dimensional information from 2
dimensional projections.

Interferometric. Amplitude and phase. For any wavelike propagation.
E.g. ambisonic sound.

Holography in quantum �eld theories

Generalisation of black hole thermodynamics. Hawking, t'Hooft,
Susskind. Entropy is area.

Abstracted in string theory. Expected in quantum gravity.

AdS-CFT correspondence.

Holographic principle + Unruh e�ect ⇒ �eld equation of gravity
(Newtonian and GR)

Jacobson (PRL 1995), ..., Verlinde (JHEP 2011) 5 / 29



Classical holography I

Newtonian gravity (∆ϕ = 4πGρ):

ρ∇ϕ = ∇ ·PPPgrav (∇ϕ) = ∇ ·
(

1

4πG

[
∇ϕ∇ϕ− 1

2
(∇ϕ)2III

])
Maxwell stress tensor.

Euler �uids are holographic

Ideal Euler �uids: PPPEuler = p(u, ρ)III . p is the thermostatic pressure, e.g. ideal gas.

∇ ·PPPEuler = ∇p = ρ∇µ+ ρs∇T
Follows from the Gibbs-Duhem relation: 0 = sdT − vdp + dµ. For isothermal
processes of ANY �uid the chemical potential is a mechanical potential.
Friedmann equation.

Classical holographic property:

∇ ·P(...)P(...)P(...) = ρ∇φ(...)

Constitutive (...), material property. Thermodynamics or �eld equation
dependent? 6 / 29



Further remarks

Balance of momentum. Global form:

Ṁ = −Fsurf + Fbulk .

Local form and substantial forms:

ρv̇̇v̇v +∇ ·PPP = −ρ∇ϕ, ρv̇ i + ∂kP
ik = −ρ∂ iϕ. (1)

Bulk and surface forces. Substantial or comoving derivative, Convective and
conductive current densities, PPPconv = PPPcond + ρvvv ◦ vvv . Hidden Galilean
covariance.

Particle or �eld??

ρv̇̇v̇v +∇ ·PPPgrav = 0 ⇐⇒ v̇̇v̇v = −∇ϕ
Test particle and integrating screens. Constant background �eld or �eld theory?
(ρ̇+ ρ∇ · vvv = 0, ∆ϕ = 4πGρ)
Newtonian form:

Ṁ = F

The universality of point mass modell.
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Entropy inequality
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Ockham's razor

"Is there a harmony of mathematics and physics??"
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Constitutive state space

Coleman-Noll and Liu procedures. Separation of functions and variables.
The entropy inequality is conditional :

ρė +∇ · qqq(e,∇e) = 0,

ρṡ(e,∇e) +∇ · JJJ(e,∇e)− Λ(e,∇e)(ρė +∇ · qqq(e,∇e)) =

ρ
∂s

∂∇e
(∇e)··· + ρ

(
1

T
− Λ

)
ė + ... ≥ 0

Liu-procedure, Lagrange�Farkas-multipliers. It follows that:

∂s

∂∇e
(e,∇e) = 0, Λ =

1

T
, and qqq(e,∇e) · ∇

(
1

T
(e)

)
≥ 0

Constitutive state variables: (e,∇e)
→ thermodynamic state variables: (e)

Process direction variables: (ė, (∇e)···,∇2e)
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Weakly nonlocal extensions

Classi�ed by constitutive state spaces and constraints

Fluid mechanics. Mass, velocity and energy. (ρ,∇ρ, v ,∇v , e,∇e)
Constraints: balances of mass, momentum and energy (→ quantum
mechanics and more)
→ Fourier-Navier-Stokes equations.

Fluid mechanics +scalar �eld (ρ,∇ρ, v ,∇v , e,∇e, ϕ,∇ϕ, ∇2ϕ)
Constraint: evolution equation, balances of mass momentum and
energy.
→ Fourier-Navier-Stokes + Newtonian gravity and more

Fluid mechanics + second order weak nonlocality in density. Mass,
velocity and energy. (ρ,∇ρ,∇2ρ, v ,∇v , e,∇e)
Constraints: balances of mass, momentum and energy
→ Korteweg �uids, super�uids, quantum mechanics and more
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Newtonian gravity

VP-Abe (Physica A, 2022)
Abe-VP (Symmetry, 2022)

Pszota-VP (arXiv: 2306.01825)
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Scalar �eld and hydrodynamics

s(e − ϕ− ∇ϕ·∇ϕ
8πGρ

, ρ). Gibbs relation:

du = Tds +
p

ρ2
dρ = de − d

(
ϕ +
∇ϕ · ∇ϕ
8πGρ

)
.

The potential energy, ϕ, the �eld energy and internal energy are separated.

Balances of mass, momentum, internal energy + �eld equation:

ρ̇+ ρ∇ · vvv = 0,

ρv̇vv +∇ ·PPP = 000,

ρė +∇ · qqq = −PPP : ∇vvv ,
ϕ̇ = f .

Constraints of the entropy inequality:

ρṡ +∇ · JJJ = Σ ≥ 0
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Gravity

Constitutive state variables : (e,∇e, ρ,∇ρ, (vvv),∇vvv , ϕ,∇ϕ,∇2ϕ)
→ thermodynamic state variabless : (e, ρ, ϕ,∇ϕ)

ρṡ +∇ · JJJ =(
qqq +

ϕ̇

4πG
∇ϕ

)
· ∇

(
1

T

)
+

f

4πGT
(∆ϕ− 4πGρ)

−
[
PPP − pIII − 1

4πG

(
∇ϕ∇ϕ− 1

2
∇ϕ · ∇ϕIII

)]
:
∇vvv
T
≥ 0

Perfect self-gravitating (isothermal) �uids are holographic:

∇ ·
(
pIII +

1

4πG

(
∇ϕ∇ϕ− 1

2
∇ϕ · ∇ϕIII

))
= ρ∇(µ+ ϕ)
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Nonlinear extension, static, nondissipative �eld

Stationary nondissipative �eld equation:

0 = ∆ϕ− 4πGρ− K∇ϕ · ∇ϕ.

Spherical symmetric force �eld. Crossover. Apparent and real masses:

f (r) = − r1
Kr(r + r1)

= − GMaa

r(r + r1)
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Thermodynamic gravity, MOND and Dark Matter

NGC 3198

MDM+BM Maa

190 110

Unit : 109M�
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Korteweg �uids

VP-Fülöp (Proc. Roy. Soc., 2004)
VP-Kovács (Phil. Trans. Roy. Soc. A, 2020)

VP (Physics of Fluids, 2023)
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Korteweg �uids: history

Capillarity.
Van der Waals : gradient of density is a thermodynamic variable.
Korteweg (1905): second gradient of density, pressure expansion.

Balances of mass, momentum and internal energy:

ρ̇+ ρ∇ · vvv = 0,

ρv̇vv +∇ ·PPP = 000,

(ρė +∇ · qqq = −PPP : ∇vvv .)

PPP =
(
p − α∆ρ− β(∇ρ)2

)
III − δ∇ρ ◦ ∇ρ− γ∇2ρ

α, β, γ, δ are density dependent material parameters.

Instable. Second law? Eckart �uids 1948, Dunn and Serrin (ARMA, 1985).
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Korteweg �uids � Liu procedure

Constitutive state variables : (e,∇e, ρ,∇ρ,∇2ρ, (vvv),∇vvv)
→ thermodynamic state variables: (e, ρ,∇ρ)

Process direction: (ė, (∇e)···,∇2e, ρ̇, (∇ρ)···, (∇2ρ)···,∇3ρ, v̇̇v̇v , (∇2vvv)···)

ρṡ +∇ · JJJ = qqq · ∇
(
1

T

)
−

−
[
PPP − pIII − ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)]
:
∇vvv
T
≥ 0

Rigorous methods are essential.

The pressure of an ideal, non-dissipative Korteweg �uid is :

PPP = p(e, ρ)III +
ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)
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Perfect Korteweg �uids are holographic

PPPK =
ρ2

2

(
∇ · ∂s

∂∇ρ
III +∇ ∂s

∂∇ρ

)
Classical holographic property, with internal energy:

∇ ·PPPK = ρ(∇φ+ T∇s) , where φ =
∂ρu

∂ρ
−∇ · ∂(ρu)

∂∇ρ
= δρ(ρu)|ρs

Functional derivative. Isothermal, adiabatic, ...

Momentum balance: continuum AND point mass

ρv̇vv +∇ ·PPPK = ρ(v̇vv +∇φ) = 0 → v̇vv = −∇φ

Conserved vorticity follows.

Bohm potential, super�uids, Schrödinger equation, ...
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Probabilistic Korteweg �uids � additivity

Zeroth Law of thermodynamics: separability of independent physical systems.

Multicomponent normal �uids. Notation: ρ1 = ρ1(xxx1).

u(ρ1 + ρ2) = u(ρ1) + u(ρ2).

Multicomponent probabilistic �uids:

u(ρ1ρ2) = u(ρ1) + u(ρ2).

Functional condition, ρtot = ρ1ρ1 :

u(ρtot , (∇ρtot)2) = u
(
ρ1ρ2, (ρ2∇1ρ1)2 + (ρ1∇2ρ2)2

)
=

u(ρ1, (∇1ρ1)2) + u(ρ2, (∇2ρ2)2).

Unique solution:

u(ρ, (∇ρ)2) = k ln ρ+
K

2

(∇ρ)2

ρ2

Independent Schrödinger equations for independent particles/components.

QFT, GR can be �uids: Jackiw et al. (JP A, 2004), Biró-VP(FP, 2015), ...
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Summary

Emergent classical holography and emergent evolution.

The Second Law of Thermodynamics is applicable for �elds and
informative in the marginal case of zero dissipation.

Variational principles are not necessary.

The Second Law of Thermodynamics is (looks like) fundamental.

Case 1: There is a thermodynamic road to gravity.

Fluid + scalar internal variable −→ gravity

Second law with zero dissipation =⇒ classical holography

Energy type, quadratic =⇒ gravity

Case 2: There is a thermodynamic road to quantum physics.

Korteweg �uids −→ quantum mechanics

Second law with zero dissipation =⇒ classical holography

Additivity =⇒ quantum systems
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"This may be true, because it is mathematically trivial."
(somebody from Princeton, according to R. Pisarski)
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Thank you for the attention!
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Interplay: hidden Galilean covariance

Spacetime aspects - separation of material and motion

∂(ρetotal)

∂t
+∇ · (qqq + ρvvvetotal +PPP · vvv) = 0, → ρėtotal +∇ · (qqq +PPP · vvv) = 0

It is a change of frame:

Comoving(substantial) time derivative: ė = ∂e
∂t + vvv · ∇e,

Galilean four-vector: (ρe,qqq), convective and conductive current densities.

constitutive state space: ∇e is spacelike covector,

total and internal energies : e = eTOT − v2/2.

Consequences

What is comoving? Mass? Energy? Observer representations. Flow-frame.

Total energy, kinetic energy and internal energy. Galilean relativistic
energy-momentum-mass four-tensor. Consequence: entropy production is
objective.

Temperature is a Galilean relativistic four-vector: thermal reference frames.
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